โครงงานกลุ่มสาระการเรียนรู้คณิตศาสตร์
เรื่อง  คณิตศาสตร์กับลักษณะการเดินของนาฬิกา
หน้า 1

บทคัดย่อ

 

          จากโครงงานคณิตศาสตร์กับลักษณะการเดินของนาฬิกาได้ดำเนินการโดยมีจุดมุ่งหมายเพื่อที่จะศึกษาวิธีการดำเนินการทางคณิตศาสตร์กับลักษณะการเดินของนาฬิกา  แล้วนำผลที่ได้ไปสร้างจัตุรัสรูปแบบต่าง ๆ  ที่เกิดจากการกำหนดสีของเลขโดดแต่ละจำนวน  หลังจากนั้นได้ศึกษารูปแบบที่เปลี่ยนไปของการหมุนหรือการพลิกตารางจัตุรัส  แล้วนำรูปแบบที่ได้ไปประยุกต์ใช้ในการสร้างรูปแบบลวดลายใหม่ที่สวยงาม

          การดำเนินการเริ่มจากการร่วมกันคิด  วิเคราะห์  วางแผน  และตัดสินในเลือกเรื่องที่จะทำ  แล้วมีการแบ่งงานไปศึกษาหาข้อมูล  และดำเนินการศึกษาในหัวข้อที่ได้รับมอบหมาย  หลังจากนั้นนำผลการศึกษาที่ได้มาสรุป   วิเคราะห์  แล้วเรียบเรียงเป็นรูปเล่มรายงาน

          ผลจากการศึกษาพลว่า  วิธีดำเนินการทางคณิตศาสตร์มีความเกี่ยวข้อกับลักษณะการเดนของนาฬิกา  สามารถนำผลจากการศึกษาไปสร้างตารางจัตุรัสในรูปแบบต่าง ๆ  ที่เกิดจากการกำหนดสีของเลขโดแต่ละจำนวนได้  เมื่อนำมาหมุนหรือพลิกตารางจัตุรัส  จากการดำเนินการศึกษาทั้งหมด  8  รูปแบบ  พบว่าจะได้รูปแบบเปลี่ยนไป  4  รูปแบบ  และเมื่อนำรูปแบบนั้นมาผสมผสารสามารถสร้างลวดลายใหม่ตามความสนใจได้อีกมากมาย

คำนำ

          การเรียนการสอนวิชาคณิตศาสตร์ที่มุ่งเน้นให้ผู้เรียนมีความรู้ในวิชาคณิตศาสตร์จากการเรียนในห้องเพียงอย่างเดียวทำให้นักเรียนมีความคิดเกี่ยวกับวิชาคณิตศาสตร์ว่าวิชาคณิตศาสตร์เป็นวิชาที่ต้องเน้นทฤษฎี  หลักการ  และเนื้อหาเท่านั้น  ซึ่งมีผลทำให้นักเรียนไม่ชอบวิชาคณิตศาสตร์

          ในการจัดทำโครงงานนี้เป็นการใช้คณิตศาสตร์ขั้นพื้นฐานในการทำโครงงานเป็นการผสมผสานวิชาคณิตศาสตร์  กระบวนการคิด  การจัดการอย่างสมดุล  กับหลักการอื่น ๆ  เข้าด้วยกันทำให้เกิดสิ่งที่แปลกใหม่  น่าสนใจ  และน่าที่จะศึกษาค้นคว้า  ตลอดจนส่งเสริมให้นักเรียนรู้จักคิดวิเคราะห์  วางแผน  นำสิ่งรอบตัวมาประยุกต์เข้ากับการเรียนในวิชาคณิตศาสตร์  ซึ่งโครงงานที่จัดทำขึ้นนี้ได้อาศัยหลักการเดินของเข็มนาฬิกา  แต่เมื่อเรานำมาคิด  วิเคราะห์  และดัดแปลง  จึงเกิดความรู้และได้รับประสบการณ์ที่แปลกใหม่

          ผู้จัดทำหวังว่า  โครงงานคณิตศาสตร์นี้จะเป็นประโยชน์ต่อผู้ที่สนใจวิชาคณิตศาสตร์  และผู้ที่ต้องการจะศึกษาค้นคว้าทุก ๆ  ท่าน ขอขอบพระอาจารย์ประสิทธิ์ มายูร ที่ช่วยเป็นที่ปรึกษาและดูแลเป็นอย่างดี

                                                                                                        คณะผู้จัดทำ
 


สารบัญ 

ที่มาและความสำคัญของโครงงาน 

วัตถุประสงค์              

วิธีการดำเนินงาน          

การศึกษาข้อมูลพื้นฐานก่อนออกแบบหรือกำหนดแนวทาง 

สมมุติฐาน                       

สรุปผลการศึกษาหรือผลงานที่เกิดขึ้น    

แนวทางการนำผลไปใช้  การอภิปรายผล  และข้อเสนอแนะ    

บรรณานุกรม

หน้า

6

6

7

7

8

18

ที่มาและความสำคัญของโครงงาน 

          ในการดำเนินชีวิตประจำวันเรามีความเกี่ยวข้องกับเวลาอยู่ตลอดไม่ว่าเราจะทำกิจกรรมใด ๆ  เช่น 06.00  น.  ตื่นนอน  06.30 – 07.30  น.  อาบน้ำ  เป็นต้น
          นาฬิกาเป็นเครื่องมือสำคัญที่ใช้ในการบอกเวลาซึ่งในนาฬิกานั้นมีการนำตัวเลขต่าง ๆ  เข้าไปเกี่ยวข้อง  ได้แก่  เลข  1  ถึงเลข  12  เมื่อเราได้พิจารณาลักษณะการเดินของนาฬิกา  ซึ่งมีทั้งการเดินตามเข็มนาฬิกาเป็นการเดินจากขวาไปซ้าย  หรือจากเลข  1,2  ไปยังเลข  12  และการเดินทวนเข็มนาฬิกาเป็นการเดินจากซ้ายไปขวา  หรือจากเลข  12,11  ย้อนไปยังเลข  1  และยับได้พบสมบัติอย่างหนึ่งของการเดินของนาฬิกาจะเริ่มเดินจากเลข  1  ไปเลข  2  ไปจนถึงเลข  12  เป็นเช่นนี้ซ้ำแล้วซ้ำอีก  จากลักษณะการเดินของนาฬิกาดังกล่าวทำให้สามารถนำมาสร้างตารางจัตุรัสเพื่อศึกษาความเกี่ยวข้องทางคณิตศาสตร์ได้  ด้วยเหตุนี้ทางกลุ่มเราจึงสนใจที่จุศึกษาความเกี่ยวข้องของคณิตศาสตร์กับลักษณะการเดินของนาฬิกา 

วัตถุประสงค์ 

          1.  เพื่อศึกษาวิธีการดำเนินการทางคณิตศาสตร์กับลักษณะการเดินของนาฬิกา

          2.  เพื่อนำผลจากวิธีการดำเนินการทางคณิตศาสตร์ตามลักษณะการเดินของนาฬิกาไปสร้างตารางจัตุรัสรูปแบบต่าง ๆ  ที่เกิดจากการกำหนดสีของเลขโดดแต่ละจำนวน

          3.  ศึกษารูปแบบที่เปลี่ยนไปของการหมุนหรือการพลิกตารางจัตุรัสที่ได้จากการดำเนินการทางคณิตศาสตร์ตามลักษณะการเดินของนาฬิกา

           4.  เพื่อสร้างลวดลายต่าง ๆ  ที่ได้จากการผสมผสานรูปแบบต่าง ๆ  ของการดำเนินการทางคณิตศาสตร์ตามลักษณะการเดินของนาฬิกา

 วิธีการดำเนินงาน 

          1.  จัดตั้งกลุ่มโครงงาน  ซึ่งประกอบด้วยสมาชิก  9  คน  ได้มีการประชุมปรึกษาหารือเกี่ยวกับการดำเนินการจัดทำโครงงาน  โดยกลุ่มได้แบ่งหน้าที่ให้สมาชิกออกไปศึกษาข้อมูลเอกสารต่าง ๆ

          2.  ประชุมปรึกษาหารือในการหาหัวข้อของโครงงานคณิตศาสตร์ที่กลุ่มจะดำเนินการ  โดยทางกลุ่มได้มีการเสนอหัวข้อที่จะดำเนินการหลายอย่าง  เช่น  ลักษณะของการผสมสี  ลักษณะการหมุนของนาฬิกา  เป็นต้น  ซึ่งทางกลุ่มเห็นว่าลักษณะของการหมุนของนาฬิกาเป็นเรื่องที่น่าสนใจจึงได้ตกลงที่จะทำการศึกษา  ลักษณะการหมุนของนาฬิกา  ซึ่งทางกลุ่มได้กลับไปศึกษาเอกสารต่าง ๆ ที่เกี่ยวข้องอีกครั้ง
          3.  ประชุมปรึกษาหารือ  ร่วมกันวิเคราะห์วางแผน  แล้วกำหนดแนวทางในการดำเนินงาน
 

          4.  ดำเนินการศึกษาวิธีดำเนินกาทางคณิตศาสตร์กับลักษณะการเดินของนาฬิกา  แล้วนำผลที่ได้ไปสร้างตารางจัตุรัสรูปแบบต่าง ๆ  หลังจากนั้นได้ศึกษาการหมุนหรือการพลิกตารางจัตุรัสให้เกิดรูปแบบที่แตกต่างไป  และมีการผสมผสานรูปแบบข้างต้น  เพื่อสร้างลวดลายต่าง ๆ ที่สวยงาม  ซึ่งมีการแบ่งหน้าที่ดำเนินการ          

           5.  สรุปผลจากการดำเนินการ

           6.  ประชุมอภิปรายปัญหาต่าง ๆ และให้ข้อเสนอแนะ

           7.  จัดทำรายงานโครงงานคณิตศาสตร์

           8.  นำเสนอโครงงานคณิตศาสตร์ 

การศึกษาข้อมูลพื้นฐานก่อนออกแบบหรือกำหนดแนวทาง 

            ทางกลุ่มได้ศึกษาข้อมูลพื้นฐานก่อนกำหนดแนวทางในการดำเนินงาน  ดังนี้

1.  ความหมาย  หลักการ  จุดประสงค์  ประเภท  ขั้นตอน  และตัวอย่างของการทำโครงงานคณิตศาสตร์

                2.  ลักษณะการเดินของนาฬิกา

                3.  ระบบจำนวนจริง  ได้แก่  การดำเนินการต่าง ๆ  สมบัติของจำนวน  เป็นต้น

                4.  เรขาคณิต  ได้แก่  ลักษณะของรูปทางเรขาคณิต  การหมุนหรือการพลิกรูปทางเรขอคณิต

 สมมุติฐาน 

                1.  วิธีการดำเนินการทางคณิตศาสตร์  มีความเกี่ยวข้องกับลักษณะการเดินของนาฬิกา

                2.  ผลจากวิธีการดำเนินการทางคณิตศาสตร์ตามลักษณะการเดินของนาฬิกา  สามารถสร้างตารางจัตุรัสรูปแบบต่าง ๆ  ที่เกิดจากการกำหนดสีของเลขโดดแต่ละจำนวนได้

                3.  การหมุนหรือการพลิกตารางจัตุรัสที่ได้จากการดำเนินการทางคณิตศาสตร์ตามลักษณะการเดินของนาฬิกาทำให้รูปแบบของตารางจัตุรัสเปลี่ยนไป

                4.  การผสมผสานรูปแบบต่าง ๆ  ของการดำเนินการทางคณิตศาสตร์  ตามลักษณะการเดินของนาฬิกาทำให้เกิดลวดลายต่าง ๆ ได้

สรุปผลการศึกษาหรือผลงานที่เกิดขึ้น 

                1.  ทางกลุ่มได้ศึกษาวิธีการดำเนินการทางคณิตศาสตร์กับลักษณะการเดินของนาฬิกา  ดังนี้

                      1.1  วิธีการดำเนินการทางคณิตศาสตร์

                                 วิธีการดำเนินการทางคณิตศาสตร์ที่กลุ่มได้ศึกษาจากเอกสาร  ได้แก่

                             -  การบวก  เช่น  2 + 5 = 7  เป็นต้น

                             -  การลบ  เช่น  5 - 8 =  -3  เป็นต้น

                             -  การคูน  เช่น  4 x 5 =  20  เป็นต้น

                             -  การหาร  เช่น  10 ÷ 2 =  5  เป็นต้น

                      1.2  เลขโดด

              เลขโดดในระบบตัวเลขฐานต่าง ๆ  จะมีจำนวนต่างกันไป  เช่น  เลขโดดของระบบตัวเลขฐานสิบจะมีเลขโดดอยู่  10  ตัว  ได้แก่  0,1,2,3,4,5,6,7,8,9  เลขโดดของระบบตัวเลขฐานสองจะมีเลขโดดอยู่  2  ตัว  ได้แก่  0,1  เป็นต้น

                      1.3  ลักษณะการเดินของนาฬิกา

             ลักษณะการเดินของนาฬิกาซึ่งมีทั้งการเดินตามเมนาฬิกาเป็นการเดินจากขวาไปซ้ายหรือจากเลข  1,2  ไปยัง  12  และการเดินทวนเข็มนาฬิกาเป็นการเดินจากซ้ายไปขวาหรือจากเลข  12,11  ย้อนไปยังเลข 1  และยังได้พบลักษณะอย่างหนึ่งของการเดินของนาฬิกาว่าเข็มของนาฬิกาจะเริ่มเดินจากเลข  1  ไปเลข  2  ไปจนถึงเลข  12  แล้วกลับมาเริ่มเดินจากเลข  1  ไปเลข  2  ไปจนถึงเลข  12  เป็นเช่นนี้เสมอ ๆ

                      1.4  วิธีการดำเนินการทางคณิตศาสตร์ตามลักษณะการเดินของนาฬิกา

              จากลักษณะการเดินของเข็มนาฬิกา  ทำให้กลุ่มได้กำหนดวิธีการทางคณิตศาสตร์ตามลักษณะการเดินของนาฬิกาได้  3  ลักษณะ  คือ  การบวก  การลบ  การคูณ  โดยจำนวนที่ใช้ดำเนินการต้องทำในรูปแบบของตารางจัตุรัส  และเป็นเลขโดด  ทางกลุ่มสามารถกำหนดเลขโดดเรียงกันได้หลากหลาย  เช่น

 -  กำหนด  2  ตัว  ได้แก่ 0,1                               0

 -  กำหนด  3  ตัว  ได้แก่  0,1,2

 -  กำหนด  4  ตัว  ได้แก่  0,1,2,3  เป็นต้น               1

         ทางกลุ่มเห็นว่าการหารไม่สามารถทำได้  เนื่องจากมีบางจำนวนดำเนินการแล้วได้ผลลัพธ์เป็นเศษส่วน  ซึ่งไม่สามารถลงเป็นจำนวนในเลขโดดนั้นได้
            ตัวอย่าง  การดำเนินการเกี่ยวกับการบวก  โดยใช้เลขโดด  0,1,2

+

0

1

2

0

0

1

2

1

1

2

0

2

2

0

1

      

         จากตารางจะเห็นว่า  ทางกลุ่มใช้วิธีการนำเลขในแต่ละแถว  มาบวกกับเลขแต่ละหลักตามวิธีปกติ  ถ้าผลบวกที่ได้มีจำนวนเกินกว่าเลขโดดที่มากที่สุดให้นับต่อไปตามลักษณะการหมุนตามเข็มของนาฬิกา  เช่น   2 + 2  =  4  ซึ่งมีค่ามากกว่า  2  ซึ่งเป็นเลขโดดที่มีค่ามากที่สุด  ให้นับกลับมาที่  0,1,2  ซ้ำตามรูป  จะได้ว่า  2 + 2  มีค่าเท่ากับ  1  ตามวิธีการดำเนินการตามลักษณะการเดินของนาฬิกา

          ตัวอย่าง  การดำเนินการเกี่ยวกับการลบ  โดยใช้เลขโดด  0,1,2,3

-

0

1

2

3

0

0

3

2

1

1

1

0

3

2

2

2

1

0

3

3

3

2

1

0

      

          จากตารางจะเห็นว่าทางกลุ่มใช้วิธีการนำเลขในแต่ละแถว  มาลบกับเลขแต่ละหลักตามวิธีการปกติ  ถ้าผลลบที่ได้มีค่าที่ติดลบ  ให้นับย้อนกลับตามลักษณะการหมุนทวนเข็มของนาฬิกา  เช่น  2 - 3  =  -1  ซึ่งมีค่าติดลบ  ให้นับกลับตามลักษณะการหมุนทวนเข็มของนาฬิกามา  1  ครั้งตามรูป  จะได้ว่า  2 - 3  มีค่าเท่ากับ  3
 

ตัวอย่าง  การดำเนินการเกี่ยวกับการคูณ  โดยใช้เลขโดด  0,1,2,3,4

X

0

1

2

3

4

0

0

0

0

0

0

1

0

1

2

3

4

2

0

2

4

1

3

3

0

3

1

4

2

4

0

4

3

2

1

   

          จากตารางจะเห็นว่าทางกลุ่มใช้วิธีการนำเลขในแต่ละแถว  มาคูณกับตัวเลขในแต่ละหลักตามวิธีการปกติ  ถ้าผลคูณที่ได้มีจำนวนเกินกว่าเลขโดดที่มากที่สุด  ให้นับต่อไปตามลักษณะการหมุนตามเข็มของนาฬิกา  เช่น        2 x 4  =  8  ซึ่งมีค่ามากกว่า  4  ซึ่งเป็นเลขโดดที่มีค่ามากที่สุดให้นับกลับมาที่  0,1,2  ซ้ำตามรูป  จะได้ว่า  2 x 4  มีค่าเท่ากับ  3  ตามวิธีการดำเนินการตามลักษณะการเดินของนาฬิกา

                2.  ทางกลุ่มได้นำผลจากวิธีการดำเนินการทางคณิตศาสตร์ตามลักษณะการเดินของนาฬิกาไปสร้างตารางจัตุรัสรูปแบบต่าง ๆ ที่เกิดจากการกำหนดสีของเลขโดดแต่ละจำนวน  ดังนี้
                                เลขโดด  0  คือ  สีแดง
                                เลขโดด  1  คือ  สีเหลือง
                                เลขโดด  2  คือ  สีเขียว
                                เลขโดด  3  คือ  สีฟ้า
                                เลขโดด  4  คือ  สีน้ำเงิน
                                เลขโดด  5  คือ  สีม่วง
                                เลขโดด  6  คือ  สีชมพู 

                ตัวอย่าง  ตารางจัตุรัสรูปแบบต่าง ๆ ที่เกิดจากการกำหนดสีของเลขโดด  0,1  ของการดำเนินการทางคณิตศาสตร์  ตามลักษณะการเดินของนาฬิกา  มีดังนี้

ตัวอย่าง  ตารางจัตุรัสรูปแบบต่าง ๆ ที่เกิดจากการกำหนดสีของเลขโดด  0,1,2  ของการดำเนินการทางคณิตศาสตร์ตามลักษณะการเดินของนาฬิกา  มีดังนี้

 ตัวอย่าง  ตารางจัตุรัสรูปแบบต่าง ๆ ที่เกิดจากการกำหนดสีของเลขโดด  0,1,2,3,4,5,6  ของการดำเนินการทางคณิตศาสตร์ตามลักษณะการเดินของนาฬิกา  มีดังนี้

จากตัวอย่างข้างต้น  จะเห็นว่าทางกลุ่มใช้การดำเนินการ  การบวก  การลบ  และการคูณในแต่ละชุดของเลขโดด  ซึ่งทำให้ได้ตารางจัตุรัสรูปแบบต่าง ๆ ที่หลากหลายกันออกไป 

                3.  ทางกลุ่มได้ศึกษารูปแบบที่เปลี่ยนไปโดยได้ตกลงกันว่าจะทำการหมุนหรือการพลิกตารางจัตุรัสที่กำหนดสีแล้ว  ที่ได้จากการดำเนินการทางคณิตศาสตร์ตามลักษณะการเดินของนาฬิกาเพื่อที่จะได้รูปแบบที่แปลกใหม่  โดยกำหนดการหมุน  และการพลิกตารางจัตุรัสไว้ดังนี้
                ตัวอย่าง  การหมุนและการพลิกตารางจัตุรัสของดำเนินการโดยการบวกของเลขโดด  0,1,2  จากตารางจัตุรัสของดำเนินการโดยการบวกของเลขโดด  0,1,2

รูปแบบ  A  ไม่หมุนตารางจัตุรัส

 รูปแบบ  B  การหมุนตารางจัตุรัสเป็นมุม  90  องศา

 

 

 รูปแบบ  C  การหมุนตารางจัตุรัสเป็นมุม  180  องศา

  รูปแบบ  D การหมุนตารางจัตุรัสเป็นมุม  270 องศา

 

 

รูปแบบ  E  การพลิกในแนวตั้ง

 รูปแบบ  F  การพลิกในแนวนอน

 

 

 รูปแบบ  G  การพลิกทแยงมุมขวา   

 รูปแบบ  H  การพลิกทแยงมุมซ้าย

 

 

          จากตัวอย่างข้างต้น  และการทดลองหมุน  หรือพลิกตารางจัตุรัสที่ได้จากการดำเนินการทางคณิตศาสตร์ตามลักษณะการเดินของนาฬิกา  ทางกลุ่มเห็นว่าดำเนินการหมุน  หรือพลิกได้  8  แบบ  และทางกลุ่มเห็นว่าการพลิกในแนวต่าง ๆ จะมีลักษณะรูปแบบซ้ำกันกับการหมุน  ทางกลุ่มจึงตกลงว่าจะศึกษาเฉพาะรูปแบบการหมุนตารางจัตุรัส  นั้นคือรูปแบบ  A,B,C  และ  D 

         ตัวอย่าง  การหมุนและการพลิกตารางจัตุรัสของดำเนินการโดยการบวกของเลขโดด 0,1,2,3,

4,5,6 

           ตารางจัตุรัสของดำเนินการโดยการคูณ  ของเลขโดด  0,1,2,3,4,5,6

 รูปแบบ  A  ไม่หมุนตารางจัตุรัส 

    รูปแบบ  B  การหมุนตารางจัตุรัสเป็นมุม  90  องศา

 

 

 รูปแบบ C การหมุนตารางจัตุรัสเป็นมุม 180 องศา

รูปแบบ  D การหมุนตารางจัตุรัสเป็นมุม  270 องศา

 

 

        จากตัวอย่างรูปแบบที่เปลี่ยนไปจากการหมุนหรือพลิกตารางจัตุรัสทีได้จากการดำเนินการทางคณิตศาสตร์ตามลักษณะการเดินของนาฬิกา  จะเห็นว่าทางกลุ่มได้รูปแบบที่แตกต่างกันมา  4  รูปแบบ  ในแต่ละการดำเนินการทางคณิตศาสตร์ตามลักษณะการเดินของนาฬิกาของชุดเลขโดดต่าง ๆ

4.  ทางกลุ่มได้สร้างลวดลายต่าง ๆ ที่ได้จากการผสมผสานรูปแบบต่าง ๆ ของการดำเนินการทางคณิตศาสตร์ตามลักษณะการเดินของนาฬิกา  โดยกลุ่มได้นำตารางจัตุรัสมาสร้างลวดลายต่าง ๆ ที่น่าสนใจ  ดังนี้

        ตัวอย่าง  การสร้างลวดลายจากการผสมผสานรูปแบบต่าง ๆ ของการดำเนินการทางคณิตศาสตร์โดยการบวกของเลขโดด  0,1,2

      A  ไม่หมุน                            

 B  การหมุน  90  องศา 

C  การหมุน  180  องศา

   D  การหมุน  270  องศา

รูปแบบ  A,A,A,A 

รูปแบบ  A,B,C,D

                  รูปแบบ  A,B,B,A

รูปแบบ  D,D,C,C

                  รูปแบบ  A,A,B,B

รูปแบบ  B,B,B,B

     ตัวอย่าง  การสร้างลวดลายจากการผสมผสานรูปแบบต่าง ๆ ของการดำเนินการทางคณิตศาสตร์  โดยการคูณของเลขโดด  0,1,2,3,4,5,6  ( พิจารณารูปแบบ  A,B,C  และ  D  ของเลขโดด  0,1,2,3,4,5,6  จากตัวอย่างข้างต้น )

      รูปแบบ  A,B,C,D

แนวทางการนำผลไปใช้

                จากการดำเนินการจัดทำโครงงาน  ทางกลุ่มได้มีแนวทางในการนำผลไปใช้  ดังนี้

                1.  ตารางจัตุรัสที่มีลวดลายสามารถนำมาประยุกต์ได้ในงานหลาย ๆ อย่าง  เช่น  การออกแบบลวดลาย     ผ้าบาติก  กระเบื้อง  ที่รองจานข้าว  Wallpaper  เสื้อผ้า  ผ้าคอสติส  เป็นต้น

                2.นำการดำเนินการของโครงงาน  ไปประยุกต์ใช้ในการสร้างกิจกรรมที่ส่งเสริมความคิดสร้างสรรค์  และส่งเสริมใช้เวลาว่างให้เกิดประโยชน์  เช่น  การประกวดการออกแบบลวดลายทางคณิตศาสตร์  เป็นต้น

การอภิปรายผล  และข้อเสนอแนะ

        อภิปรายผล

          1.  จากการดำเนินการทางคณิตศาสตร์ตามลักษณะการเดินของนาฬิกา  จะพบว่า  ทางกลุ่มได้ศึกษาในการดำเนินการ  ได้แก่  การบวก  การลบ  การคูณ  เท่านั้น   ส่วนการหารนั้นจะพบว่ามีบางจำนวนที่ดำเนินการหารแล้ว  ผลที่ได้เป็นเศษส่วนหรือทศนิยม  ซึ่งอยู่นอกเหนือจากชุดเลขโดดที่ทางกลุ่มกำหนด

                2.  ชุดของเลขโดดที่มากขึ้น  เมื่อกำหนดสีในแต่ละเลขโดด  ทำให้ตารางจัตุรัสที่ได้มีรูปแบบที่สวยงามขึ้น

                3.  การหมุนหรือพลิกตารางจัตุรัสแต่ละครั้ง  ทำลวดลายจะแตกต่างกันไปในจำนวนที่จำกัด

                4.  การสร้างรูปแบบลวดลาย  จากการหมุนหรือพลิกตารางจัตุรัสนั้นมีหลากหลายมากกว่าที่ทางกลุ่มได้ให้ตัวอย่างไว้  และยังสามารถสร้างลวดลายต่าง ๆ จากชุดเลขโดดอื่น ๆ ได้

                ข้อเสนอแนะ

                1.  ควรมีตัวอย่างรูปแบบลวดลายให้มากกว่านี้

                2.  ควรศึกษาในเรื่องสมบัติของการดำเนินการทางคณิตศาสตร์กับลักษณะการเดินของนาฬิกา  ทั้งการดำเนินการบวก  การลบ  และการคูณ  ในแต่ละชุดเลขโดด

                3.  ควรศึกษาผลที่ได้จากการหมุนของตารางจัตุรัสในจำนวนครั้งที่มากขึ้น  เช่น  ผลของการหมุนตารางจัตุรัส  เลขโดด  0 - 3  จำนวน  2  ครั้ง  ได้แก่  การหมุน  90  องศา  แล้วหมุนต่ออีก  270  องศา  เป็นต้น


บรรณานุกรม

กรมวิชาการ  กระทรวงศึกษาธิการ.  101  โครงงานคณิตศาสตร์.  กรุงเทพฯ  :  โรงพิมพ์คุรุสภา

                ลาดพร้าว,  2540.

สถาบันพัฒนาคุณภาพวิชาการ  (พว.).  โครงงานคณิตศาสตร์.  กรุงเทพฯ  :  บริษัท  เดอะมาสเตอร์กรุ๊ป

               แมเนจเม้นท์  จำกัด,  2543.