คนรักคณิตศาสตร์
ศศิธร คนรักคณิตศาสตร์ สีดา(ฝรั่ง)

เซตและจำนวนตรรกยะ


เซตและจำนวนตรรกยะ

ดิฉัน  นางสาวสมทรง    สมรูป

เซตและจำนวนตรรกยะ...

อินเตอร์เซกชันของเซตสองเซต คือเซตที่ประกอบด้วยสมาชิกที่อยู่ในเซตทั้งสองเซต ดังแสดงในแผนภาพเวนน์

เซต (set) ในทางคณิตศาสตร์นั้น อาจมองได้ว่าเป็นการรวบรวมกลุ่มวัตถุต่างๆ ไว้รวมกันทั้งชุด แม้ว่าความคิดนี้จะดูง่ายๆ แต่เซตเป็นแนวคิดที่เป็นรากฐานสำคัญที่สุดอย่างหนึ่งของคณิตศาสตร์สมัยใหม่ การศึกษาโครงสร้างเซตที่เป็นไปได้ ทฤษฎีเซตมีความสำคัญและได้รับความสนใจอย่างมากและกำลังดำเนินไปอย่างต่อเนื่อง มันถูกสร้างขึ้นมาตอนปลายคริสต์ศตวรรษที่19 ตอนนี้ทฤษฎีเซตเป็นส่วนที่ขาดไม่ได้ในการศึกษาคณิตศาสตร์ และถูกจัดไว้ในระบบการศึกษาตั้งแต่ระดับประถมศึกษาในหลายประเทศ ทฤษฎีเซตเป็นรากฐานของคณิตศาสตร์เกือบทุกแขนงซึ่งสามารถนำไปประยุกต์ใช้ได้

 นิยาม

ตอนเริ่มแรกของ Beiträge zur Begründung der transfiniten Mengenlehre โดย เกออร์ก คันทอร์ (Georg Cantor) ผู้สร้างทฤษฎีเซตคนสำคัญ ให้นิยามของเซตเซตหนึ่งดังต่อไปนี้:[1]

ดังนั้นสมาชิกของเซตเซตหนึ่งจึงสามารถเป็นอะไรก็ได้ เช่น ตัวเลข ผู้คน ตัวอักษร หรือเป็นเซตของเซตอื่น เป็นต้น เซตต้องเขียนแทนด้วยอักษรตัวใหญ่ เช่น A, B, C ฯลฯ ตามธรรมเนียมปฏิบัติ ในประโยคที่ว่า เซต A และ B เท่ากัน หมายความว่า ทั้งเซต A และเซต B มีสมาชิกทั้งหมดเหมือนกัน (ตัวอย่างเช่น สมาชิกทุกตัวที่อยู่ในเซต A ก็ต้องเป็นสมาชิกของเซต B ด้วย เขียนแทนด้วย A = B และในทางกลับกันก็เป็นเช่นเดียวกัน เขียนแทนด้วย B = A)

สมาชิกทุกตัวของเซตเซตหนึ่งต้องไม่ซ้ำกัน และจะไม่มีสมาชิกสองตัวใดในเซตเดียวกันที่เหมือนกันทุกประการ ซึ่งไม่เหมือนกับมัลทิเซต (multiset) ที่อาจมีสมาชิกซ้ำกันก็ได้ การดำเนินการของเซตทั้งหมดยังรักษาคุณสมบัติที่ว่าสมาชิกแต่ละตัวของเซตต้องไม่ซ้ำกัน ส่วนการเรียงลำดับของสมาชิกของเซตนั้นไม่มีความสำคัญ ซึ่งต่างจากลำดับอนุกรมหรือคู่อันดับ

 การเขียนอธิบายเซต

มีสองวิธีในการเขียนอธิบาย หรือระบุถึงสมาชิกของเซตเซตหนึ่ง วิธีที่หนึ่งคือโดยการกำหนดนิยามอย่างตั้งใจ intensional definition, ด้วยการใช้กฎหรือการอธิบายด้วย ภาษาทางคณิตศาสตร์ semantic ดูตัวอย่างนี้:

A เป็นเซตซึ่งสมาชิกของมันเป็น เลขจำนวนเต็ม integers บวกสี่ตัวแรก
B เป็นเซตของสีของ ธงชาติฝรั่งเศส

วิธีที่สองคือโดย การขยายความหรือการแจกแจง extension นั่นคือ การแจกแจกสมาชิกแต่ละตัวของเซต การนิยามเซตด้วยการแจกแจงสมาชิก extensional definition ถูกเขียนแทนด้วยการแจกแจงสมาชิกของเซตภายใน เครื่องหมายวงเล็บปีกกา braces:

C = {4, 2, 1, 3}
D = {blue, white, red}

ลำดับที่สมาชิกของเซตถูกเรียงในการนิยามแบบแจกแจกสมาชิกไม่มีความสำคัญ เช่นเดียวกันกับจำนวนสมาชิกที่ซ้ำกันในรายการแจกแจง ตัวอย่างเช่น

{6, 11} = {11, 6} = {11, 11, 6, 11}

เป็นเซตที่เหมือนกันทุกประการ เพราะว่าการแจกแจงสมาชิกเซตมีความหมายเพียงว่าองค์ประกอบแต่ละตัวในรายการแจกแจงเป็นสมาชิกตัวหนึ่งของเซตนั้นแค่นั้นเอง

สำหรับเซตที่มีสมาชิกจำนวนมาก การระบุของสมาชิกสามารถเขียนอย่างย่อได้ ตัวอย่างเช่น เซตของเลขจำนวนเต็มบวกหนึ่งพันตัวแรกสามารถเขียนแบบแจกแจงได้เป็น:

{1, 2, 3, ..., 1000},

ที่ซึ่ง อิลิปซิส"..." ellipsis ("...") ระบุว่ารายการแจกแจงดำเนินต่อไปในทางที่เห็นได้ชัด อิลิปซิส"..."อาจถูกใช้ในที่ซึ่งเซตมีสมาชิกไม่จำกัด ดังเช่น เซตของ เลขจำนวนเต็มคู่ even numbers บวก เขียนแทนได้ว่า {2, 4, 6, 8, ... }

เราอาจใช้เครื่องหมายปีกการะบุเซตด้วยการนิยามได้ ในการใช้นี้ ปีกกามีความหมายว่า "เซตของ ...ทั้งหมด" ดังน้น E = {playing-card suits} คือเซตซึ่งสมาชิกสี่ตัวของมันคือ ♠, ♦, ♥, และ ♣ รูปแบบทั่วไปของมันคือ การใช้ เครื่องหมายตัวสร้างเซต set-builder notation ตัวอย่างเช่น เซตF ของเลขจำนวนเต็มที่น้อยที่สุดยึ่สิบตัวซึ่ง ยกกำลังสอง perfect squares แล้วหักออกด้วยสี่สามารถเขียนได้เป็น:

F = {n2 - 4 : n เป็นเลขจำนวนเต็ม; และ 0 ≤ n ≤ 19}

ในการนิยามนี้ เครื่องหมาย โคลอน":" colon (":") หมายถึง "โดยที่" และ การเขียนให้รายละเอียดสามารตีความได้ว่า "เซตF เป็นเซตของเลขทั้งหมดของนิพจน์ n2 - 4, โดยที่ n เป็นเลขจำนวนเต็มตั้งแต่ 0 ถึง 19" บางครั้ง " vertical bar ("|") ถูกใช้แทนโคลอน":"

บ่อยครั้งที่พวกเราต้องเลือกระบุเซตแบบนิยามหรือแบบแจกแจง ในตัวอย่างข้างต้น จะเห็นว่า A = C และ B = D

 คำศัพท์และสัญลักษณ์ของเซต

  1. เราอาจจะคิดว่าเซต คือ กลุ่มของสิ่งต่างๆซึ่งมีกฎเกณฑ์ชัดเจนว่าสิ่งใดอยู่ในเซตและสิ่งใดไม่ได้อยู่ในเซต สิ่งที่อยู่ในเซตเรียกว่าสมาชิกของเซต โดยทั่วไปจะแทนเซตด้วยตัวอักษรภาษาอังกฤษตัวพิมพ์ใหญ่ เช่น A,B,C และแทนสมาชิกของเซตซึ่งยังไม่เจาะจงว่าคือตัวอะไรด้วยอักษรภาษาอังกฤษตัวพิมพ์เล็ก เช่น a,b,c
  2. วิธีเขียนเซต มีอยู่ 3 แบบ
    • แบบข้อความ อธิบายเซตด้วยถ้อยคำ
    • แบบแจกแจงสมาชิก เขียนสมาชิกทั้งหมดภายใต้ปีกกา {} และใช้จุลภาคคั่งระหว่างคู่
    • แบบบอกเงื่อนไขของสมาชิก เขียนเซตในรูปแบบ {x | เงื่อนไขของ x}
  3. สมาชิกของเซตเป็นจำนวนหรือสิ่งใดก็ได้ เป็นเซตก็ได้
  4. เซตที่เท่ากัน เซตจะแตกต่างกันหรือไม่ขึ้นอยู่กับว่าสมาชิกต่างกันหรือไม่ โดยเซตสองเซตจะเท่ากันเมื่อมีสมาชิกเหมือนกัน
  5. เซตจำกัดและเซตอนันต์ เซตจำกัดคือเซตที่เราสามารถระบุได้ว่ามีสมาชิกกี่ตัว เซตอนันต์คือเซตที่ไม่ใช่เซตจำกัด
  6. เซตว่างคือเซตที่ไม่มีสมาชิกเลย
  7. เอกภพสัมพันธ์ คือเซตที่ใช้กำหนดขอบเขตของสิ่งที่กำลังพิจารณา แทนด้วย U
  8. เซตของจำนวนบางชนิด เช่น N = เซตของจำนวนนับ, I = เซตของจำนวนเต็ม, Q = เซตของจำนวนตรรกยะ, R = เซตของจำนวนจริง, C = เซตของจำนวนเชิงซ้อน
  9. สับเซต A เป็นสับเซตของ B หมายความว่าสมาชิกทุกตัวของ A เป็นสมาชิกของ B
  10. เพาเวอร์เซต ของ A คือเซตที่ประกอบด้วยสับเซตทั้งหมดของ A เขียนแทนโดย P(A)

 การดำเนินการของเซต

  1. ยูเนียน ของ A และ B คือเซตที่เกิดจากการรวบรวมสมาชิกของ A และ B เข้าไว้ด้วยกัน
  2. อินเตอร์เซกชัน ของ A และ B คือเซตที่ประกอบด้วยสมาชิกที่เหมือนกันของ A และ B
  3. ผลต่าง A – B คือเซตที่ประกอบด้วยสมาชิกของ A ที่ไม่ใช่สมาชิกของ B
  4. คอมพลีเมนต์ ของ A เขียนแทนด้วย A’ คือสับเซตของ U ที่ประกอบด้วยสมาชิกที่ไม่อยู่ ใน A

 การนับจำนวนสมาชิกของเซต

  1. ถ้า A เป็นเซตจำกัด เราใช้สัญลักษณ์ n(A) หรือ |A| แทนจำนวนสมาชิกของ A
  2. การนับจำนวนสมาชิกของ U ที่ไม่อยู่ใน A อาจใช้สูตร n(A’) = n(U)-n(A)

สมบัติของเซตที่ควรทราบ

ภาพ:Sute.gif

 การสร้างจากจำนวนตรรกยะ

จำนวนจริงสามารถสร้างเป็นส่วนสมบูรณ์ของจำนวนตรรกยะ สำหรับรายละเอียดและการสร้างจำนวนจริงวิธีอื่นๆดูที่ construction of real numbers (การสร้างจำนวนจริง)

 วิธีสัจพจน์

ให้ R แทนเซตของจำนวนจริงทั้งหมด แล้ว

คุณสมบัติสุดท้ายนี้เป็นตัวแบ่งแยกจำนวนจริงออกจากจำนวนตรรกยะ ตัวอย่างเช่น เซตของจำนวนตรรกยะที่มีกำลังสองน้อยกว่า 2 มีขอบเขตบน (เช่น 1.5) แต่ไม่มีขอบเขตบนน้อยสุดที่เป็นจำนวนตรรกยะ เพราะว่ารากที่สองของ 2 ไม่เป็นจำนวนตรรกยะ

จำนวนจริงนั้นมีคุณสมบัติข้างต้นเป็นเอกลักษณ์ พูดอย่างถูกต้องได้ว่า ถ้ามีฟีลด์อันดับที่มีความบริบูรณ์เดเดคินท์ 2 ฟีลด์ R1 และ R2 จะมีสมสัณฐานฟีลด์ที่เป็นเอกลักษณ์จาก R1 ไปยัง R2 ทำให้เราสามารถมองว่าทั้งคู่เป็นวัตถุเดียวกัน

หมายเลขบันทึก: 205363เขียนเมื่อ 3 กันยายน 2008 17:48 น. ()แก้ไขเมื่อ 20 มิถุนายน 2012 23:03 น. ()สัญญาอนุญาต: จำนวนที่อ่านจำนวนที่อ่าน:


ความเห็น (2)

อยากทราบว่าเซตแจกแจงสมาชิกกับเซตเงื่อนไขสามาชิกต่างกันยังไง แยกกันยังไงคะ

พบปัญหาการใช้งานกรุณาแจ้ง LINE ID @gotoknow
ClassStart
ระบบจัดการการเรียนการสอนผ่านอินเทอร์เน็ต
ทั้งเว็บทั้งแอปใช้งานฟรี
ClassStart Books
โครงการหนังสือจากคลาสสตาร์ท